Quick Start with Distributed Training¶
Preparation¶
In this article, we’ll show you how to quickly start a PaddlePaddle distributed training task in a cluster. Before you start, do some preparatory work as follows:
Prepare a connected training cluster. Here we use 4 training nodes with format
*.paddlepaddle.com
to represent the host name of the node. You can modify it according to the actual situation.Make sure you have read install_steps before you start and can run PaddlePaddle on all nodes of the cluster.
Example code¶
Let’s use a very simple linear regression model as an example to explain how to start a distributed training task with 2 pserver server nodes and 2 trainer nodes. You can save this code as dist_train.py
.
import os
import paddle
import paddle.fluid as fluid
# train reader
BATCH_SIZE = 20
EPOCH_NUM = 30
BATCH_SIZE = 8
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.uci_housing.train(), buf_size=500),
batch_size=BATCH_SIZE)
def train():
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
loss = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_loss = fluid.layers.mean(loss)
opt = fluid.optimizer.SGD(learning_rate=0.001)
opt.minimize(avg_loss)
place = fluid.CPUPlace()
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
# fetch distributed training environment setting
training_role = os.getenv("PADDLE_TRAINING_ROLE", None)
port = os.getenv("PADDLE_PSERVER_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVER_IPS", "")
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = ",".join(eplist)
trainers = int(os.getenv("PADDLE_TRAINERS"))
current_endpoint = os.getenv("PADDLE_CURRENT_IP", "") + ":" + port
t = fluid.DistributeTranspiler()
t.transpile(
trainer_id = trainer_id,
pservers = pserver_endpoints,
trainers = trainers)
if training_role == "PSERVER":
pserver_prog = t.get_pserver_program(current_endpoint)
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
exe.run(startup_prog)
exe.run(pserver_prog)
elif training_role == "TRAINER":
trainer_prog = t.get_trainer_program()
exe.run(fluid.default_startup_program())
for epoch in range(EPOCH_NUM):
for batch_id, batch_data in enumerate(train_reader()):
avg_loss_value, = exe.run(trainer_prog,
feed=feeder.feed(batch_data),
fetch_list=[avg_loss])
if (batch_id + 1) % 10 == 0:
print("Epoch: {0}, Batch: {1}, loss: {2}".format(
epoch, batch_id, avg_loss_value[0]))
# destory the resource of current trainer node in pserver server node
exe.close()
else:
raise AssertionError("PADDLE_TRAINING_ROLE should be one of [TRAINER, PSERVER]")
train()
Environment Variables¶
When starting a distributed training task, different environment variables are used to represent different node roles, details as follows:
Environment Variable |
Data Type |
Example |
Description |
---|---|---|---|
|
str |
|
role of current training node |
|
str |
|
The IP addresses or hostnames of all pserver nodes in the distributed training task, separated by “,” |
|
int |
6174 |
port that the pserver process listens to |
|
int |
2 |
Number of trainer nodes in a distributed training task |
|
str |
|
IP address or hostname of the current pserver node |
|
str |
0 |
ID of the current trainer node (unique), in the range of [0, PADDLE_TRAINERS) |
Note: Environment variables are just a way to get runtime information. In practical tasks, you can use command line parameters to obtain runtime information.
Start a Distributed Training Task¶
Start Node |
Start Command |
Description |
---|---|---|
ps0.paddlepaddle.com |
|
Start pserver node |
ps1.paddlepaddle.com |
|
Start pserver node |
trainer0.paddlepaddle.com |
|
Start the number 0 Trainer Node |
trainer1.paddlepaddle.com |
|
Start the number 1 trainer node |