Tensor¶
There are two data structures used in Fluid to host the data, namely Tensor and LoD_Tensor . LoD-Tensor is a unique concept of Fluid, which appends sequence information to Tensor. The data that can be transferred in the framework includes: input, output, and learnable parameters in the network. All of them are uniformly represented by LoD-Tensor. In addition, tensor can be regarded as a special LoD-Tensor.
Now let’s take a closer look at the operations related to these two types of data.
Tensor¶
1. create_tensor¶
Tensor is used to carry data in the framework, using create_tensor
to create a Lod-Tensor variable of the specified the data type.
API reference : create_tensor
2. create_parameter¶
The neural network training process is a learning process for parameters. Fluid uses create_parameter
to create a learnable parameter. The value of this parameter can be changed by the operator.
API reference : create_parameter
3. create_global_var¶
Fluid uses create_global_var
to create a global tensor and this API allows you to specify the data type, shape, and value of the Tensor variable being created.
API reference : create_global_var
5.concat¶
Fluid uses concat
to concatenate input data along a specified dimension.
API reference : concat
7. fill_constant_batch_size_like¶
Fluid uses fill_constant_batch_size_like
to create a Tensor with a specific shape, type, and batch_size. And the initial value of the Tensor can be specified as an arbitrary constant. The batch_size information is determined by the tensor’s input_dim_idx
and output_dim_idx
.
API reference : fill_constant_batch_size_like
8. fill_constant¶
Fluid uses fill_constant
to create a Tensor with a specific shape and type. The initial value of this variable can be set via value
.
API reference : fill_constant
10. argmin¶
Fluid uses argmin
to calculate the index of the smallest element on the specified axis of Tensor.
API reference : argmin
11. argmax¶
Fluid uses argmax
to calculate the index of the largest element on the specified axis of Tensor.
API reference : argmax
12. argsort¶
Fluid uses argsort
to sort the input Tensor on the specified axis and it will return the sorted data variables and their corresponding index values.
API reference : argsort
13. ones¶
Fluid uses ones
to create a Tensor of the specified size and data type with an initial value of 1.
API reference : ones
LoD-Tensor¶
LoD-Tensor is very suitable for sequence data. For related knowledge, please read Tensor and LoD_Tensor .
1.create_lod_tensor¶
Fluid uses create_lod_tensor
to create a LoD_Tensor with new hierarchical information based on a numpy array, a list, or an existing LoD_Tensor.
API reference : create_lod_tensor
2. create_random_int_lodtensor¶
Fluid uses create_random_int_lodtensor
to create a LoD_Tensor composed of random integers.
API reference : create_random_int_lodtensor
3. reorder_lod_tensor_by_rank¶
Fluid uses reorder_lod_tensor_by_rank
to reorder the sequence information of the input LoD_Tensor in the specified order.
API reference : reorder_lod_tensor_by_rank