ops¶
abs¶
-
paddle.fluid.layers.
abs
(x, name=None) Abs Activation Operator.
\(out = |x|\)
- Parameters
x – Input of Abs operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Abs operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.abs(data)
acos¶
-
paddle.fluid.layers.
acos
(x, name=None) Arccosine Activation Operator.
$$out = cos^{-1}(x)$$
- Parameters
x – Input of acos operator
- Returns
Output of acos operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.acos(data)
asin¶
-
paddle.fluid.layers.
asin
(x, name=None) Arcsine Activation Operator.
$$out = sin^{-1}(x)$$
- Parameters
x – Input of asin operator
- Returns
Output of asin operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.asin(data)
atan¶
-
paddle.fluid.layers.
atan
(x, name=None) Arctanh Activation Operator.
$$out = tanh^{-1}(x)$$
- Parameters
x – Input of atan operator
- Returns
Output of atan operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.atan(data)
ceil¶
-
paddle.fluid.layers.
ceil
(x, name=None) Ceil Activation Operator.
\(out = \left \lceil x \right \rceil\)
- Parameters
x – Input of Ceil operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Ceil operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.ceil(data)
cos¶
-
paddle.fluid.layers.
cos
(x, name=None) Cosine Activation Operator.
\(out = cos(x)\)
- Parameters
x – Input of Cos operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Cos operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.cos(data)
cumsum¶
-
paddle.fluid.layers.
cumsum
(x, axis=None, exclusive=None, reverse=None)[source] The cumulative sum of the elements along a given axis. By default, the first element of the result is the same of the first element of the input. If exlusive is true, the first element of the result is 0.
- Parameters
x – Input of cumsum operator
axis (INT) – The dimenstion to accumulate along. -1 means the last dimenstion [default -1].
exclusive (BOOLEAN) – Whether to perform exclusive cumsum. [default false].
reverse (BOOLEAN) – If true, the cumsum is performed in the reversed direction. [default false].
- Returns
Output of cumsum operator
Examples
>>> import paddle.fluid as fluid >>> data = fluid.layers.data(name="input", shape=[32, 784]) >>> result = fluid.layers.cumsum(data, axis=0)
exp¶
-
paddle.fluid.layers.
exp
(x, name=None) Exp Activation Operator.
\(out = e^x\)
- Parameters
x – Input of Exp operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Exp operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.exp(data)
floor¶
-
paddle.fluid.layers.
floor
(x, name=None) Floor Activation Operator.
\(out = \left \lfloor x \right \rfloor\)
- Parameters
x – Input of Floor operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Floor operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.floor(data)
hard_shrink¶
-
paddle.fluid.layers.
hard_shrink
(x, threshold=None)[source] HardShrink activation operator
\[\begin{split}out = \begin{cases} x, \text{if } x > \lambda \\ x, \text{if } x < -\lambda \\ 0, \text{otherwise} \end{cases}\end{split}\]- Parameters
x – Input of HardShrink operator
threshold (FLOAT) – The value of threshold for HardShrink. [default: 0.5]
- Returns
Output of HardShrink operator
Examples
>>> import paddle.fluid as fluid >>> data = fluid.layers.data(name="input", shape=[784]) >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3)
logsigmoid¶
-
paddle.fluid.layers.
logsigmoid
(x, name=None) Logsigmoid Activation Operator
$$out = \log \frac{1}{1 + e^{-x}}$$
- Parameters
x – Input of LogSigmoid operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of LogSigmoid operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.logsigmoid(data)
reciprocal¶
-
paddle.fluid.layers.
reciprocal
(x, name=None) Reciprocal Activation Operator.
$$out = \frac{1}{x}$$
- Parameters
x – Input of Reciprocal operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Reciprocal operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.reciprocal(data)
round¶
-
paddle.fluid.layers.
round
(x, name=None) Round Activation Operator.
\(out = [x]\)
- Parameters
x – Input of Round operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Round operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.round(data)
rsqrt¶
-
paddle.fluid.layers.
rsqrt
(x, name=None) Rsqrt Activation Operator.
Please make sure input is legal in case of numeric errors.
\(out = \frac{1}{\sqrt{x}}\)
- Parameters
x – Input of Rsqrt operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Rsqrt operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.rsqrt(data)
sigmoid¶
-
paddle.fluid.layers.
sigmoid
(x, name=None) Sigmoid Activation Operator
$$out = \frac{1}{1 + e^{-x}}$$
- Parameters
x – Input of Sigmoid operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Sigmoid operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.sigmoid(data)
sin¶
-
paddle.fluid.layers.
sin
(x, name=None) Sine Activation Operator.
\(out = sin(x)\)
- Parameters
x – Input of Sin operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Sin operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.sin(data)
softplus¶
-
paddle.fluid.layers.
softplus
(x, name=None) Softplus Activation Operator.
\(out = \ln(1 + e^{x})\)
- Parameters
x – Input of Softplus operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Softplus operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.softplus(data)
softshrink¶
-
paddle.fluid.layers.
softshrink
(x, name=None) Softshrink Activation Operator
\[\begin{split}out = \begin{cases} x - \lambda, \text{if } x > \lambda \\ x + \lambda, \text{if } x < -\lambda \\ 0, \text{otherwise} \end{cases}\end{split}\]- Parameters
x – Input of Softshrink operator
lambda (FLOAT) – non-negative offset
- Returns
Output of Softshrink operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.softshrink(data)
softsign¶
-
paddle.fluid.layers.
softsign
(x, name=None) Softsign Activation Operator.
$$out = \frac{x}{1 + |x|}$$
- Parameters
x – Input of Softsign operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Softsign operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.softsign(data)
sqrt¶
-
paddle.fluid.layers.
sqrt
(x, name=None) Sqrt Activation Operator.
Please make sure legal input, when input a negative value closed to zero, you should add a small epsilon(1e-12) to avoid negative number caused by numerical errors.
\(out = \sqrt{x}\)
- Parameters
x – Input of Sqrt operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Sqrt operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.sqrt(data)
square¶
-
paddle.fluid.layers.
square
(x, name=None) Square Activation Operator.
\(out = x^2\)
- Parameters
x – Input of Square operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Square operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.square(data)
tanh¶
-
paddle.fluid.layers.
tanh
(x, name=None) Tanh Activation Operator.
$$out = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
- Parameters
x – Input of Tanh operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of Tanh operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.tanh(data)
tanh_shrink¶
-
paddle.fluid.layers.
tanh_shrink
(x, name=None) TanhShrink Activation Operator.
$$out = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
- Parameters
x – Input of TanhShrink operator
use_cudnn (BOOLEAN) – (bool, default false) Only used in cudnn kernel, need install cudnn
- Returns
Output of TanhShrink operator
Examples
import paddle.fluid as fluid data = fluid.layers.data(name="input", shape=[32, 784]) result = fluid.layers.tanh_shrink(data)
thresholded_relu¶
-
paddle.fluid.layers.
thresholded_relu
(x, threshold=None)[source] ThresholdedRelu activation operator
\[\begin{split}out = \begin{cases} x, \text{if } x > threshold \\ 0, \text{otherwise} \end{cases}\end{split}\]- Parameters
x – Input of ThresholdedRelu operator
threshold (FLOAT) – The threshold location of activation. [default 1.0].
- Returns
Output of ThresholdedRelu operator
Examples
>>> import paddle.fluid as fluid >>> data = fluid.layers.data(name="input", shape=[1]) >>> result = fluid.layers.thresholded_relu(data, threshold=0.4)
uniform_random¶
-
paddle.fluid.layers.
uniform_random
(shape, dtype='float32', min=-1.0, max=1.0, seed=0)[source] This operator initializes a variable with random values sampled from a uniform distribution. The random result is in set [min, max].
- Parameters
shape (list) – The shape of output variable.
dtype (np.dtype|core.VarDesc.VarType|str) – The type of data, such as float32, float64 etc. Default: float32.
min (float) – Minimum value of uniform random. Default -1.0.
max (float) – Maximun value of uniform random. Default 1.0.
seed (int) – Random seed used for generating samples. 0 means use a seed generated by the system. Note that if seed is not 0, this operator will always generate the same random numbers every time. Default 0.
Examples
import paddle.fluid as fluid result = fluid.layers.uniform_random(shape=[32, 784])