\u200E
============================ learning_rate_scheduler ============================ .. _cn_api_fluid_layers_cosine_decay: cosine_decay ------------------------------- .. py:function:: paddle.fluid.layers.cosine_decay(learning_rate, step_each_epoch, epochs) 使用 cosine decay 的衰减方式进行学习率调整。 在训练模型时,建议一边进行训练一边降低学习率。 通过使用此方法,学习速率将通过如下cosine衰减策略进行衰减: .. math:: decayed\_lr = learning\_rate * 0.5 * (cos(epoch * math.pi / epochs) + 1) 参数: - **learning_rate** (Variable | float) - 初始学习率。 - **step_each_epoch** (int) - 一次迭代中的步数。 - **epochs** - 总迭代次数。 **代码示例** .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 lr = fluid.layers.cosine_decay( learning_rate = base_lr, step_each_epoch=10000, epochs=120) .. _cn_api_fluid_layers_exponential_decay: exponential_decay ------------------------------- .. py:function:: paddle.fluid.layers.exponential_decay(learning_rate,decay_steps,decay_rate,staircase=False) 在学习率上运用指数衰减。 训练模型时,推荐在训练过程中降低学习率。每次 ``decay_steps`` 步骤中用 ``decay_rate`` 衰减学习率。 .. code-block:: text if staircase == True: decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps) else: decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) 参数: - **learning_rate** (Variable|float)-初始学习率 - **decay_steps** (int)-见以上衰减运算 - **decay_rate** (float)-衰减率。见以上衰减运算 - **staircase** (Boolean)-若为True,按离散区间衰减学习率。默认:False 返回:衰减的学习率 返回类型:变量(Variable) **代码示例**: .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.exponential_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) .. _cn_api_fluid_layers_inverse_time_decay: inverse_time_decay ------------------------------- .. py:function:: paddle.fluid.layers.inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False) 在初始学习率上运用逆时衰减。 训练模型时,最好在训练过程中降低学习率。通过执行该函数,将对初始学习率运用逆向衰减函数。 .. code-block:: python if staircase == True: decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step)) else: decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step) 参数: - **learning_rate** (Variable|float)-初始学习率 - **decay_steps** (int)-见以上衰减运算 - **decay_rate** (float)-衰减率。见以上衰减运算 - **staircase** (Boolean)-若为True,按间隔区间衰减学习率。默认:False 返回:衰减的学习率 返回类型:变量(Variable) **示例代码:** .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.natural_exp_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) sgd_optimizer.minimize(avg_cost) .. _cn_api_fluid_layers_linear_lr_warmup: linear_lr_warmup ------------------------------- .. py:function:: paddle.fluid.layers.linear_lr_warmup(learning_rate, warmup_steps, start_lr, end_lr) 在正常学习率调整之前先应用线性学习率热身(warm up)进行初步调整。 .. code-block:: text if global_step < warmup_steps: linear_step = end_lr - start_lr lr = start_lr + linear_step * (global_step / warmup_steps) 参数: - **learning_rate** (float | Variable) - 学习率,类型为float值或变量。 - **warmup_steps** (int) - 进行warm up过程的步数。 - **start_lr** (float) - warm up的起始学习率 - **end_lr** (float) - warm up的最终学习率。 返回:进行热身衰减后的学习率。 **示例代码** .. code-block:: python import paddle.fluid as fluid boundaries = [100, 200] lr_steps = [0.1, 0.01, 0.001] warmup_steps = 50 start_lr = 1. / 3. end_lr = 0.1 decayed_lr = fluid.layers.linear_lr_warmup( fluid.layers.piecewise_decay(boundaries, lr_steps), warmup_steps, start_lr, end_lr) .. _cn_api_fluid_layers_natural_exp_decay: natural_exp_decay ------------------------------- .. py:function:: paddle.fluid.layers.natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False) 将自然指数衰减运用到初始学习率上。 .. code-block:: python if not staircase: decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) else: decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps)) 参数: - **learning_rate** - 标量float32值或变量。是训练过程中的初始学习率。 - **decay_steps** - Python int32数 - **decay_rate** - Python float数 - **staircase** - Boolean.若设为true,每个decay_steps衰减学习率 返回:衰减的学习率 **示例代码:** .. code-block:: python import paddle.fluid as fluid base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.natural_exp_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True)) .. _cn_api_fluid_layers_noam_decay: noam_decay ------------------------------- .. py:function:: paddle.fluid.layers.noam_decay(d_model,warmup_steps) Noam衰减方法。noam衰减的numpy实现如下。 .. code-block:: python import padde.fluid as fluid import numpy as np # 设置超参数 d_model = 2 current_steps = 20 warmup_steps = 200 # 计算 lr_value = np.power(d_model, -0.5) * np.min([ np.power(current_steps, -0.5), np.power(warmup_steps, -1.5) * current_steps]) 请参照 `attention is all you need `_ 参数: - **d_model** (Variable)-模型的输入和输出维度 - **warmup_steps** (Variable)-超参数 返回:衰减的学习率 **代码示例**: .. code-block:: python import padde.fluid as fluid warmup_steps = 100 learning_rate = 0.01 lr = fluid.layers.learning_rate_scheduler.noam_decay( 1/(warmup_steps *(learning_rate ** 2)), warmup_steps) .. _cn_api_fluid_layers_piecewise_decay: piecewise_decay ------------------------------- .. py:function:: paddle.fluid.layers.piecewise_decay(boundaries,values) 对初始学习率进行分段衰减。 该算法可用如下代码描述。 .. code-block:: text boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] if step < 10000: learning_rate = 1.0 elif 10000 <= step < 20000: learning_rate = 0.5 else: learning_rate = 0.1 参数: - **boundaries** -一列代表步数的数字 - **values** -一列学习率的值,从不同的步边界中挑选 返回:衰减的学习率 **代码示例**: .. code-block:: python import paddle.fluid as fluid boundaries = [10000, 20000] values = [1.0, 0.5, 0.1] optimizer = fluid.optimizer.Momentum( momentum=0.9, learning_rate=fluid.layers.piecewise_decay(boundaries=boundaries, values=values), regularization=fluid.regularizer.L2Decay(1e-4)) .. _cn_api_fluid_layers_polynomial_decay: polynomial_decay ------------------------------- .. py:function:: paddle.fluid.layers.polynomial_decay(learning_rate,decay_steps,end_learning_rate=0.0001,power=1.0,cycle=False) 对初始学习率使用多项式衰减 .. code-block:: text if cycle: decay_steps = decay_steps * ceil(global_step / decay_steps) else: global_step = min(global_step, decay_steps) decayed_learning_rate = (learning_rate - end_learning_rate) * (1 - global_step / decay_steps) ^ power + end_learning_rate 参数: - **learning_rate** (Variable|float32)-标量float32值或变量。是训练过程中的初始学习率。 - **decay_steps** (int32)-Python int32数 - **end_learning_rate** (float)-Python float数 - **power** (float)-Python float数 - **cycle** (bool)-若设为true,每decay_steps衰减学习率 返回:衰减的学习率 返回类型:变量(Variable) **代码示例**: .. code-block:: python import paddle.fluid as fluid start_lr = 0.01 total_step = 5000 end_lr = 0 lr = fluid.layers.polynomial_decay( start_lr, total_step, end_lr, power=1)